BERGER LAHR

Technical documentation

Manual

Step 7 library for
IFS, IFE, IFA

Edition: V1.02, 01.2008

= 4 v
Fl
T TS T iy 3 D kil
7]

L e e

Berger Lahr GmbH & Co. KG
Breslauer Str. 7
D-77933 Lahr

a compdny of
Schneider
Electric

[PLCopen]
LSRR
LR L
Mnotion |

Step 7 Motion library for IFS, IFE, and IFA {comtrol |
Contents

1 EXTracting the [IDrary ..o e e e e s e e e e e e e s e renee s 3
2 STArtING 8 NEW PIOJECT ..eeiiiiiiiiii ittt ettt e s bt e e s aa bt e e s aabb e e e s annbe e e e enreas 5
3 Configuring the NArWAIEe e e e e e e e e e annnaees 6
4 INSTAIING the GSD ..cciiii i e e e e e e e s e e e e e e s s e s st b e aeeeeeeeseannrrneees 7
5 Linking the drive into the PB NEtWOIKcoociiiieiiee e e e e e 9
6 ASSIgNING the 1/O AUUIESSESeeiiiiiiiiii ettt e e st e e s aaneee s 11
6.1 Parameter data ChanNElo e e e e e e 11
6.2 Process data CRANNElcueiii i e e et e e st e e e s nrbe e e e s snraeee e e 12
7 Description of the lHhrary BIOCKSuuuiiiiiic e 13
7.1 Copying the axis structure into the ProjeCt........ccccv i 13
7.2 Creating an axiS FEIEIEINCE it e e e e e re e e e e e e as 14
8 (T o=V o] (oo <SR 16
8.1 BasiC CalliNg PrOCEAUIESuviiii et s e r e e e e e s e s r e e e e e s s snnnranaeeeeeeeennnnes 16
8.2 Explanation of COMMON PArAMELEIScooiiiiiiiiiiiie et e e 17
8.3 PRasSing QiagramS.ttt et e e e s et e e e e e e e s e anbbaaeeeaaeeaeaann 18
8.4 FaTE A= LY=L oY o PSRRI 19
8.5 N o o PSP 22
8.6 [(o] 1 411 o Vo PO P TP PP PUPRON 24
8.7 Profile POSIION MOGE..... ..ttt e e e e e e st e e e e e e e e e aanes 27
8.8 V2= Vo Lol 1420 1 1 Yo 1= SRR 30
8.9 [Tl o T oo =T 1 PSSR 31
S0 O B ST (o] o] o 11 o [P O PP PR PP PPOTPPPN 34
8.11 FaSt POSITION CAPTUIE ...ttt e e e e e st bbbt e e e e e e e s s abbbb e e e e e e e e s annrneeeas 35
T S T= Y- o [o T T =10 1= (=Y ST 38
S TG T 1V 1 = o = 1= U =3 = S 48
8.14 INPULS/OULPULS .ottt a bt e e ettt e e st bt e e e st b et e e s b be e e e s snbeeeeeaabneeeen 52
o T T = g (oY gl o =T Yo |11 o Yo [TP RRRT P 58
9 (€10 1T T | 4 2 PESR 60
O Y E] o) =T o (oY W 4o =] TP 62
11 Parameter list for Up- and Download fUNCLIONccueeiiiiiiiieiiii e 65
BERGER LAHR 2/66

we control motion

|

“lhotion —
Step 7 Motion library for IFS, IFE, and IFA {comirol |

1 Extracting the library

In order to use the library blocks, you must first unpack the archive “BL_Motion_IFx_Vxxxx.zip"
with the Step7 software.
This is done with the menu item Retrieve in the menu File.

The following window for selecting the archive is opened:
Retrieving - Select an archive e d |

Suchen ir: IE}.ﬁ.rchives j - £ -

S BL_Motion_IF

Dateiname: [BL_Motion_|Fx_2001.2ip Oifnen |
L ateityp: IF'KZip 4 D-archive [7.zip] j Abbrechen |
A

Browse to the directory of the library archive, and mark the library.
Confirm your selection with “Open*.

In the window shown below, you select the target
directory into which the library is to be unpacked.

x|
-0 §7ar7 A

-0 STHSYS
-0 Tifc
-0 57IKX
-0 S7INF
xR] LIES
-0 STMANUAL

-0 STMET

0] STHGD J
-0 STHVE

-0 57Froj

-0 57scl

0] S75KA

0] STSYM

R0 S7TIC.405 |

| k. I Cancel | Help |

Mark the required directory, and confirm your
selection with “OK”.
Recommendation: <Siemens directory>\Step7\S7TMP

Example: C:\Programs\Siemens\Step7\S7LIBS

Select destination directory

BERGER LAHR 3/66

we control motion

—{ Prcopet}
“limotion —
Step 7 Motion library for IFS, IFE, and IFA {Control |

Depending on the configuration of your Step7 software, the
successful unpacking procedure will be confirmed.

Retrieve {3020:58) x|

directory 'C:hProgram

\i}) The retrieved data have been stored in the project
FilezhSiemenshStepftSFLIBSSBL _Maotion_|F=_ 2007

[Do not dizplay this meszage again.

Confirm with “OK”.

In a further confirmation window, you are asked whether the
unpacked library is to be opened.

Retrieve (3Z2B0:754)

The following objects were retrieved:
Projects: Mone

Librariez: BL_Mation_IFx_ %2001
Do you want to open these now?

i:;

Tes Mo

Deny the request with “No”.
Note: Of course, you can open the library, and manually copy the relevant blocks into your

application by means of the copying function of the Step 7 software.

You have now successfully unpacked the library, and can therefore access the blocks with the
Step7 editors in order to use them in your application as described below.

BERGER LAHR 4/66

we control motion

Step 7 Motion library for IFS, IFE, and IFA

—{PLcopenl -

“lmotion

{comirol |

For the library's function, it is essential that you use the associated Device Master File (GSD)

BLS70746.GSD. The GSD supports all three drive types. But first, the corresponding GSD must
be installed so that it is available in the Hardware Manager. For this purpose, you must start a new
project and start the Hardware Manager.

2 Starting a new project

Create a new project. For this, you open the menu File, and select the menu item New or Wizard
'New project’. Hereby, it is assumed that you know how to create a new project, so that reference

is made here to the online Help and to the documentation of Step7 and Siemens.

E? Help on STEP 7

]

H e

Aushlenden Zuruick Yarmartz Startzeite

[l @

Drucken Glozzam Objects

=101 %]

Irhalt ||ﬂdE:-: I ﬁuchenl

|_:_||:[j_}| Setting Up and Editing the Project
----- Froject Structure

=4[] Setting Up a Project
Creating a Project
b @ |nzerting Stations
----- @ Inzerting an 577 Program
=0 How to Set Up Projects

Ineerting a Station

R et |

L

----- Uzing Foreign-Language Character Se
----- Setting the M5 Windows Language

Creating a Project Using the 'y
Creating a Project Manually

s

Creating a Project

To construct & solution to your
autamation task using the framewoark of
a project management, you will need to
create a new project. The new project is
created in the directory you set for
prajects in the "General” tab when you
selected the menu command Options =
Customize.

Note
The SIMATIC Manager allows names
that are longer than eight characters.

-

BERGER LAHR

we control motion

5/66

—[PLCopen]—

“lmotion |

Step 7 Motion library for IFS, IFE, and IFA {comirol |

3 Configuring the hardware

When you have created a new project, you must define the hardware that is to be used. For this,
you select the menu Insert, and insert a station by means of the menu item Station.
Subsequently, you mark the inserted station, and start the hardware configurator via the menu
Edit and the sub-menu item Open Object.

Hereby, it is assumed that you know how to configure the hardware, so that reference is made
here to the online Help and to the documentation of Step7 and Siemens.

E? Help on STEP 7

=10l x|

Ll @

e =
Aushlenden Zurlick “orwarts Startzeite Drucken Glozsany Ohjects

Inhalt |Inde:-: I Suchenl

El Eﬂ B azizz of Configuring Hardware with 5 -
H |ntroduction to Configuring Hardw
@ B azic Procedure for Configuring H
- @ Overview: Procedure for Configur
i @ Working with the Hardware Catalc
e @ Tipz for Editing Station Configurati
I @ Configuring Central Racks
- @ Configuring the Diztibuted 1/0 [DP]
- @ Configuing PROFINET |0 Devices
=@ Configuing a SIMATIC PC Station (511
@ Saving, mpoarting and Exparting Canfi
@ Synchronous Operation of Multiple CP
@ M odifying the System during Operatior

Introduction to
Configuring Hardware

Configuring

The term "configuring” refers to the
arranging of racks, modules, distributed
/O (D) racks, and interface
submaodules in a station window. Racks
are represented by a configuration table
that permits a specific number of
modules to be inserted, just like a real
rack.

In the configuration table, STERP 7

automatically assigns an address to
each module. You can change the

=@ Configuring H-Systems -
3

Ch o |
In order to link the drive into the Profibus network, you must first install the GSD associated to the
corresponding drive, as described in the following section. If this has already been done, you can
proceed with the Chapter Linking the drive into the PB network.

.=l

BERGER LAHR

we control motion

6/66

—[PLCopen]—
oy |

“limotion

Step 7 Motion library for IFS, IFE, and IFA {control |
4 Installing the GSD
Note: The library may only be used with the associated GSD (data master file)

BLS70746.GSD, which supports all three drive types IFS, IFE, and IFA.
The library will not work with the standard GSD.

Copy the GSD into any directory on your hard disk.

Recommendation: <Siemens directory>\Step7\S7TMP

Example: C:\Programs\Siemens\Step7\S7LIBS

Next, you open the dialogue box in the hardware configurator for installing GSD files. This is done
via the menu Options and the menu item Install GSD files ...

The window for installing GSD files is opened.

Install GSD Files

Install GSD Files: [from the directory =]

IE:"»F'FEEIGFE.-’-'-.M FILESASIEMEMSAYSTERTSSTTMP Browse ... |

Yersion

Drefauilt

|zl for PLCopen [PR326.00]

[nztall | Shiow Log Select Al Dezelect All

|

Browse to the directory with the GSD, and mark it. Confirm your selection
with “Install”.

BERGER LAHR 7/66

we control motion

—[PLCopen|—
“lmotion —
Step 7 Motion library for IFS, IFE, and IFA {comirol |

Confirmation of a successful installation.
Install GSD file {13:4986) |

': The inztallation was completed succezsfully.
L3

Close the confirmation message with “OK".

Now also close the window for installing GSDs with “Close”, which returns you to the hardware
configurator for the remaining hardware installation steps.

BERGER LAHR 8/66

we control motion

—[PLCopen|—
Tlimotion [~
Step 7 Motion library for IFS, IFE, and IFA {comirol |

5 Linking the drive into the PB network

A prerequisite for linking the drives into the network is that you have included a module rack, a
CPU, and a DP master system in your hardware configuration.

[Hw Config - [SIMATIC 300 {Configuration) - Example] .; o =] [
E“l Station Edit Insert PLC Miew Options ‘Window Help - =]

D[22 (%] S| Ele sl [@Be| %28 sl

. 5l x|
Find: I ﬁﬂ ﬁil
Profile: Im
PROFIBUS[T): DP master spstem [1]];ﬁl PROFIBUS DP -
v ||| & PROFIBUS-Fa
, -3 PROFINET IO
SIMATIC 200
SIMATIC 400

SIMATIC PC Bazed -
B caaie me e
(I L|_I

:|2| 0] UR

Slot Module oo M | @ | Comment |
1 | ~| |[PROFIBLSDF slaves for E
2 CPU 3152 DP GES] |2 — ||SIMATIC 57, M7, and 07—
A LIF FE = [diztrbuted rack]

Press F1 to get Help. | o

Now mark the master system in the hardware configurator, and via the menu Insert/Insert
Object... you select the item IclA for PLCopen after clicking through the sub-menus Additional
Field Devices, Drives,and IClA.

Additional Field [Irives & Berger Lahr GrmbH ; |cld, for PLCopen
3 Clozed-Loop I:::ur_ 3140 -_
3 Configured Static 5 (3 ateway
(1 DP Y0 slaves (1 Compatible PROFIE
(O DP/sS-
(3 DP/PA Link.
(I ENCODER

FT 20 r
F:' Fi vl 1 Tl 1 e 4| o

BERGER LAHR 9/66

we control motion

—[PLCopen]—

| ol
b

“lmotion!
Step 7 Motion library for IFS, IFE, and IFA {control |
Now select the drive's Profibus address, and confirm with “OK".
Properties - PROFIBUS interface IclA for PLCopen %]

General Parameterz |

Address; IE - I

Tranzmiz=ion rate; 12 Mbps

Subnet:
--- ok networked --- (=1 |
Properties. . |
[Telete |

Cancel Help

You have now entered the drive as a Profibus Slave, and linked it to the DP master system. The
library uses two communication channels for communication with the drive: The parameter data
channel (8 bytes) in Slot 1, and the process data channel (12 bytes) in Slots 2 and 3.

[Hw Config - [SIMATIC 300 {Configuration) -- Example]

Eﬂ] Station Edit Inserk PLC Miew Options Window Help

=101 x|
=18 %]

D[22 (%] 2| Ele| dsuldl B= %2 s

1 - FROFIBIS[T): DP mazter syztem (1] j
2 CPU 31
X2 on J
3] |— [3] lcld for PLCopen
4 - o,
= fclA
I Pee— y &
-+ -
« | _"I_I
4 | (3) ol for PLEopen
Slot Order Humber # Dezsignation | Addresz | O Address Comment
i S5 | feinlimen compand e ogoT & -
7 S | devialimee ¥ compacd dive &g —
= 27| fntetiet covmpaet divve & 7T hd|
Press F1 to get Help, | Chg

Finally, the 1/0 addresses for the communication channels must be defined, as described in the

next Chapter.

BERGER LAHR 10/66

we control motion

—[PLCopen|—
Tlimotion [~
Step 7 Motion library for IFS, IFE, and IFA {comirol |

6 Assigning the I/O addresses

The last adjustment in the hardware configurator involves assigning the input and output
addresses of the communication channels. These addresses depend on the projected CPU and on
the PLC's configuration.

6.1 Parameter data channel

In order to assign the addresses for the parameter data channel, you must mark Slot 1, and select
the menu item Object Properties... in the menu Edit.
Now assign a free address space for output and input data respectively, as described below.

Note: These addresses must be made known to the library.
The starting address of the output range must be transferred to the function
MC Init_IFx at the input “AdrParameterOut”, and the starting address of the input
range at the input “AdrParameterin”.

Properties - DP slave e |
Address /1D |
Y Tpe: IEIut- IFpE j [irect Entryi. |
— Dutput
Addrezs: Length: I it EonziEtent over;
Stat [258 |2 = |Bute =l i =]
End: 263
Process image: | j
— Input
Address; [Lenth: [t [Eorziztent oven
Start: IEEE IE ﬁ IE_I,lte j ILlnit j
End: 263
Process image: | j
[0 ata far 5 pecific k anufaciuner:
[amimun 14 butes heradecimal separated by commma orblank space]
Cancel Help

BERGER LAHR 11/66

we control motion

—[PLCopen|—
“lmotion —
Step 7 Motion library for IFS, IFE, and IFA {comirol |

6.2 Process data channel

The addresses of the process data channel are assigned in the same way as the addresses of the
parameter data channel. The only difference is that the input and output ranges are assigned to
other slots.

Note: These addresses must be made known to the library.
The starting address of the output range must be transferred to the function
MC Init_IFx at the input “AdrProcessdataOut”, and the starting address of the input
range at the input “AdrProcessdataln”.

Properties - DP slave 2 ; : x|

Address /1D |

170 Tpe: IFpLt ;I Direct Entn... |

Iripuat

Address: Length: |t Congiztent over
Start; |254 |'|2 ::I IB_l,lte ;I IUnit LI
End: 275
Process image: I :I

Dats for Specitic kM anulfactuner: I

[E=imum 14 bytes hezadecimal, separated by comma or blank space]

Cancel Help |

Properties - DP slave : 7 x|
Address £ 1D

[AE Tope: IDulput ;I DirectErtm.. |

Output
Address: LLength; it Eonsstent ower:

Sta [254 [z = [eue = foni =l
End: 275
Frocess image: I ;I

[Data fon S pecific Manuracturer: |

[k iE=irum 14 bytes Hexadecimal. separated by commaior Blank space]

Cancel | Help |

To conclude the configuration, save and compile the settings by means of the menu item Save
and Compile in the menu Station of the hardware configurator.

BERGER LAHR 12/66

we control motion

Step 7 Motion library for IFS, IFE, and IFA

| i

Tlmotion
{comirol |

7 Description of the library blocks

7.1 Copying the axis structure into the project
Open the previously extracted library in the SIMATIC Manager.

ser projects Libraes | Sample pr-:uiectsl Multipruiectsl

Open Projeck

[ame

| Starage path

. BL_Motion_IFx_W2001 C:\Program FileshSiemenshStep™S7LIBSAE

@2 GRAPH?
&2 Redundant 10 [¥1]

‘i“'llln‘-'l’li"' kIET M

C:AProgram FileshSiemens\Step?S 7libzharap
C:4%Program FileshSiemens\Step?S7libzhred_

[l ' g ONRERPRIR, po) [P B o - O I Ty L B oy | Y IS R R

Next, mark the block UDT18, and copy it into the clipboard with the function
Copy in the menu Edit.

@ File Edit Inserk PLC \Miew Options Window Help

=10l %]
=181

2| 23] & lm|e] &l [= =

[< No Fier »

=1 9|

=-§ BL_Maotion_IFx_2001
=-(z7] PLCopen

Object name | Symbolic name | Created in language =
L3 FCO MC_[rit_IFx SCL
LFFE149 MC_wiritePar_[Fx SCL
L3 FE14E RC_wfriteDigDutput_IFx SCL
L COH dF kA Tl Demb~ IC -l e

Close the library, and mark the block folder in your project.
Now insert the block into your project from the clipboard by means of the function
Paste in the menu Edit.

QSIMATIE Manager - [Example -- %\ denicl01%s-mdeni-datal’,
£ File Edt Insert PLC View Options ‘Window Help

=10l x|
=171

D[ez| 2825 % =@ &l [2 2

[< o Fiter >

=]

% Example
2-F SIMATIC 300
=@ cru 3152 0P
E-{z7] 57-Programm

Note:

Cbject name | Symbolic name | Created in language |
ik 0B1 SCL
Q Systemdaten

Awiz_Ref |Fx

Of course, you can also change the number of the UDT.

This is done with the function Rename in the menu Edit.

BERGER LAHR

we control motion

13/66

—[PLCopen|—
“lmotion —
Step 7 Motion library for IFS, IFE, and IFA {comirol |

7.2 Creating an axis reference

Create a global data block (Axis DB) in the block folder as follows:

Select Insert / S7-Block / Data Block in the Simatic Manager.

Edit the block's properties according to your requirements. You must keep in mind that the block is
a global DB.

Properties - Data Block . x|
General - Part 1 IGeneraI - Part 2| Callz I .-'-‘-.ttril:nutesl

Mame and type: IDEMEI IShared DB j I j

Symbolic Mame: I.-i'-.:-:is_Flef

Symbal Camment: Ia:-:is referencelz)

Created in Language: IDE j

Project path: I

St locati

o [iedenici0 v mdeni-datal \USE R\FienwSismens_Libs\Souice._Cod

Code Interface

Date created: 23072007 2:03:03 P

Lazt modified: 23072007 2:03:03 P 23072007 3:03:03 PR

Comment; ;I
e | ten |

Confirm your entries with “OK".

Next, open the block by marking it and selecting the menu item Open Object in the menu Edit.
This starts the LAD/STL/FBD editor, with which you can edit the block.

HSiLAD/STL/FBD - [DB40 -- "Axis_Ref" - Example',SIMATIC 3004CPU 315-2 D | T N (=]
{} File Edit Insert PLC Debug Wiew Options Window Help _|5’|5|
izl=

Initial wvalue

Type

0. STEUCT
+0.0| [DB_WAR |INT a Tewporary placehc
END»_STRUCT

- E5

-4 skdlibs

@ Standard Libraty
- SIMATIC_MET_CP
-4 Redundant 10 (1)
-4 GRAPH?
(-4 BL_Mation_IFx_vz001

l.ibraries Bl
& Program elements |E_E Call structure | i | | _PI

ﬂl |4| 4| ll}ll'\ 1T:Emar A ZInfa & 3 Crossrefersnces 4: Address info. 2 S Modify A B Diagnostics)_
Press F1 ta get Help, [2 |affline labs <5.2 |Insert | A~

BERGER LAHR 14/66

we control motion

_i PLEopen il
{2
“lmotion

Step 7 Motion library for IFS, IFE, and IFA {control |
You can now create the axis reference by defining a variable of the type UDT18.
In case you have renamed the UDT, you must also rename the type.
ELAD,.I"STL,.-"FBD - [DB40 -- “Axis_Ref” -- Example’,SIMATIC 3005CPU 315-2 D i |I:I|5|
i} File Edit Insert FLC Debug Wiew Options MWindow Help i |ﬁ||£|
;IEI Type Initial wvalue
Bl STREUCT I
E‘“ Librarie_s Axi=_7 TDTLlE axis reference for hnn]—:l
(514> stdlibs END_STRUCT

Q Standard Library
G- SIMATIC_MET_CP
-4 Redundant 10 (v1)
(-8 GRAPHT

[0 BL_Mation_IFx_v2001

IJI:raries

%

Pragran ele. . |E_E Call struct... |
ﬂl |4| 4| blbll\ T.Emor A Zlnfo } % Crosgeferences A 4; Address info. S Modifp A B Diagnostics)_
Press F1 to get Help, | 2 |offling labs 5.2 |Insert [Chg 4

Note:

If you are using several drives, you can create all the axis references in one block.
This method of defining the axis reference only represents one of several
possibilities. Of course, other concepts can be applied, whereby it must only be
ensured that all the blocks of an axis use the same structure.

You have now established the basic conditions to start with the actual programming of your

application.

BERGER LAHR

15/66

we control motion

Step 7 Motion library for IFS, IFE, and IFA

_i_ﬁfé'open 5
{ |
“lmotion
{comirol |

8 Library blocks

8.1 Basic calling procedures

Restart OB
(OB 100, OB101)

MC_Init_IFA

FC11

FC11

MC_Init_IFE

] FC11
MC_Init_IFS
[)

PB address,
communication
addresses,
initialising the axis

Blocks called from
the PLC program

FB11, DB11

MC_Power_IFA

FB11, DB12

Data exchange
at library level

MC_Power_IFE
N FB11, DB13
MC_Power_IFS

\ 4

Handling axis reference ;
(e.g. DB101.Handling) |«

\ 4

FB21, DB21
MC_Home_ IFA

FB21, DB22

MC_Home_IFE
FB21, DB23
MC_Home_IFS

Gripper axis reference
(e.g. DB101.Gripper)

A A A

\ 4

MC Jog_IFA

FB31, DB31

Transfer axis reference
(e.g. DB101.Transfer)

| FB31,DB32 ‘

| MC_Jog_IFE

| FB31,DB33
MC_Jog_IFS

]

Handling

Gripper

Profibus DP
Interface

BERGER LAHR

we control motion

16/66

Step 7 Motion library for IFS, IFE, and IFA

_;_ﬁfé'open 5
{ |
lmotion |—
{comirol |

8.2 Explanation of common parameters
Par. type ‘ Parameter ‘ Data type ‘ Description
IN Enable BOOL Starts (=TRUE) and stops (=FALSE) the block's execution. The
block continues to be executed as long as TRUE is returned
(level-sensitive).
Execute BOOL The block is executed once by a rising edge. With all motion
blocks (except MC_Home) the input parameters are read after a
rising edge during execution, and the movement is then
continued with the new parameters.
When the block has been executed (Busy = FALSE), the output
parameters are maintained until FALSE is returned. The falling
edge deletes the output parameters. If the input is already
FALSE when execution is completed, the output parameters are
issued during precisely one block call, and then deleted (edge-
sensitive).
ouT Valid | BOOL | TRUE: The value to be read is available. |
Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |
CommandAborted | BOOL | TRUE: Block execution has been aborted. |
INOUT Axis STRUCT This parameter will be transferred to the AxisDB.
Example: Axis := DBname.Axisname
Init BOOL An initialising bit in the axis DB, which is not used by any other
FB, is transferred to this parameter ("Init.I0" .."Init.163", see bit
field for the initialising function). With Init (=TRUE), the block
executes its initialisation and subsequently resets the bit.
Example: Init := DBname.Axisname.Init.Ix with Ix =10 .. 163.

BERGER LAHR

we control motion

17/66

—[PLCopen]—

“lmotion|

Step 7 Motion library for IFS, IFE, and IFA {control |
8.3 Phasing diagrams
Phasing diagrams with Execute
Successful block execution Successful block execution

Execute | | Execute | |
Done I | Done I_]
Busy I I Busy I I

CommandAborted CommandAborted
Error Error
Block execution aborted Error during execution
Execute | | Execute I |
Done Done

Busy I | Busy I |
CommandAborted I | CommandAborted
Error Error _I_I_

Phasing diagrams with Enable

Successful block execution Block execution aborted

Enable _I |_ Enable _I_I
Valid I_I I_L I—I_ Valid

Busy _J U U I__ Busy _I_-I

Error Error

Error during execution Successful block execution

Enable I I Enable _I |
Valid valid __| |

Busy I I Busy
Error I_I Error

BERGER LAHR 18/66

we control motion

| PLCopen]

| i
Jmotion [
Step 7 Motion library for IFS, IFE, and IFA {comirol |

8.4 Initialisation

After every restart (hot or cold) of the PLC, it is necessary for the library blocks to be
re-initialised in order to set the block's local data into a defined original state (initial value).

For this purpose, the bit field "Init.Ix" is defined in the axis DB, and every block has the in/out
parameter "Init". The blocks execute their initialisation routine once, if their parameter "Init" is set,
and subsequently reset the transferred initialisation bit automatically. Hereby, the function
MC_Init_IFx also handles initialisation of the axis DB, as well as setting the initialisation bits in the
axis DB for initialising the library blocks.

Therefore, every library block called in the user program must be given an initialisation bit from the
axis DB via the in/out parameter "Init".

Important: Every initialisation bit may only be used by one library block. For this purpose, a total of
64 initialisation bits (AxisDB.Init.10.. AxisDB.Init.I63) is available per axis.

Initialisation ensures that no erratic functions and dangerous, unexpected motor movements are
caused by old, invalid data.

Note:
By using the library specific GSD, the PZD5 and PZD6 in the process data channel are
automatically mapped during the profibus initialisation for the send direction.

It is not allowed to change this mapping, otherwise the functionalty of the library is not
guaranteed !

For the receive direction the PZD5 and PZD6 are mappable, following the description in the
technical documentation of the device.

IiERGEit I.AHR 19/66

we control motion

—[PLCopen]—
“lmotion —
Step 7 Motion library for IFS, IFE, and IFA {Control |

8.4.1 MC_Init_IFx

Task:
Initialisation of an axis.

Calling:
"HC_Init_IFs"
—EM

— DFRddres=

— RdrParameterIn
— RdrFarameteriut
— RHdrProceszdataln
— RdrFroceszdatalut RET_MAL |
— hxis EWO [

Call the block MC_lInit_IFx once for every axis after every start of the CPU (OB100 and OB101).
Depending on your program structure, you can also call the block directly in the corresponding
restart OB.

Parameter description:

Par. type | Parameter | Data type | Description |
IN DPAddress | INT | Profibus address of the axis. |
AdrParameterin | INT | Input address of the Parameter data channel. |
AdrParameterOut | INT | Output address of the Parameter data channel. |
AdrProcessdataln | INT | Input address of the Process data channel. |
AdrProcessdataOut | INT | Output address of the Process data channel. |
IN_OUT I Axis I STRUCT I Axis reference [AxisDB.AxisReference]. |
ouT | Ret_Val | INT | Error number (value <>0 = error). |

Operating principle:

As far as possible, the transferred addresses are checked for plausibility, and entered into the axis
structure of the parameter Axis. In addition, the initialisation bits are set, in order to prepare for
initialisation of the library blocks.

BERGER LAHR 20/66

we control motion

—[PLCopen]—
“lmotion |
Step 7 Motion library for IFS, IFE, and IFA {Control |

8.4.2 MC_Power_IFx

Task:
Switching the motor current on/off.

Calling:

"AC_Power_IFx"”
— EH

—Enible Status
— Rxiz Errar

—Init EHO

Parameter description:

Par. type | Parameter | Data type | Description |

IN Enable BOOL FALSE: Switches the motor current off.
TRUE: Switches the motor current on.

IN_OUT Axis I STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL Initialisation bit [Init.I0 .. Init.163]. |

ouT Status BOOL Indicates the status of the motor current.
FALSE: Motor current is ‘off".
TRUE: Motor current is ‘on’.

Error | BOOL TRUE: An error has occurred during execution.

Operating principle:

With TRUE at input Enable, the motor current is switched ‘on’. As soon as the motor current is
switched on, the output Status is set.

With FALSE at input Enable, the motor current is switched ‘off’. As soon as the motor current is
switched off, the output Status is reset.

If an error occurs during execution, the output Error is set.

The motor current can be switched off from any status. Any motion block that is active at this point,
will be aborted.

Phase diagram:

Enable _I I
Status I Motor current |
Error
BERGER LAHR 21/66

we control motion

| PCopen)—
Tlimotion [~
Step 7 Motion library for IFS, IFE, and IFA {comirol |

8.5 Jog

8.5.1 MC_Jog_IFx

Task:

Jog is carried out in the "classical manual mode", i.e. with the inputs Forward or Backward active
for a longer period, the motor changes to continuous operation.

Calling:

"AC_Jog_IFx™
—EH

— Forward
— Backward
—Fazt

— T1pFaz
—WaitTime
— VeTloSTow Done |
— MeloFazt Busy |
— Recaleration CommandAborted
— hzxis Error

—Init ENO L

Parameter description:

Par. type ‘ Parameter ‘ Data type | Description
IN Forward BOOL FALSE: Stops the movement.
TRUE: The axis moves in the clockwise direction.
Backward BOOL FALSE: Stops the movement.

TRUE: The axis moves in the counter-clockwise direction.

Fast BOOL Speed switchover is also possible during operation:
FALSE: Speed VeloSlow is selected.
TRUE: Speed VeloFast is selected.

TipPos INT 0: Infinite, i.e. the motor switches to continuous operation
immediately.

>0: Distance [Inc] travelled by the motor after start before it
switches to continuous operation after the delay time (WaitTime)
has elapsed.

Value range:

IFS, IFA: 0..65535, initial value: 20.

IFE: 0..65535, initial value: 2.

WaitTime INT Delay time [ms], which starts when the motor has travelled a
defined distance (TipPos), and after which the motor switches to
continuous operation.

Value range: 1..10000, initial value: 500.

BERGER LAHR 22/66

we control motion

—[PLCopen|—
“liotion —
Step 7 Motion library for IFS, IFE, and IFA {comirol |

Par. type | Parameter Data type | Description
IN VeloSlow INT Speed [rpm] for movement if Fast = FALSE.
Value range:

IFS: 1..3000, initial value: 300.
IFE: 300..5000, initial value: 300.
IFA: 1..6000, initial value: 300.

VeloFast INT Speed [rpm] for movement if Fast = TRUE.
Value range:

IFS: 1..3000, initial value: 1000.

IFE: 300..5000, initial value: 1000.

IFA: 1..6000, initial value: 1000.

Acceleration DINT Value for the acceleration ramp gradient [(rpm/s?)]
Value range:

IFS: 1..765000, initial value: 2500.

IFE: 1000..10000, initial value: 2500.

IFA: 1..250000, initial value: 600.

IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
CommandAborted | BOOL | TRUE: Block execution has been aborted. |
Error | BOOL | TRUE: An error has occurred during execution. |

Operating principle:

With TRUE at the Forward or Backward input, jog is started.

Depending on the parameter Fast, operation is either with the slow (VeloSlow) or with the fast
(VeloFast) speed. The speed can also be changed during active jog. The parameters TipPos and
WaitTime are used to determine the conditions for switching from the jogging mode to continuous
operation.

If Forward and Backward = FALSE, the operating mode is terminated, and Done is set.

If Forward and Backward = TRUE, the operating mode remains active, the jogging mode is
stopped, and Busy remains set.

Phase diagram:

Forward _I | | |

Backward

I
Busy _J |_| I——
[
\

Done

Motion \ 7

BERGER LAHR 23/66

we control motion

| PCopen)—
Tlimotion [~
Step 7 Motion library for IFS, IFE, and IFA {comirol |

8.6 Homing

In homing mode, an absolute scale reference of the motor position at a defined axis position is
established. Homing can be executed by means of the two blocks described below.

8.6.1 MC_SetPosition IFx

Task:
Absolute and relative set dimensions.

Calling:

Set dimensions can only be carried out while the drive is at standstill.

"AC_SetPas_IFx”
— EM

- Execute
—Pozitian Dane |
— e Busy
— hxiz Errorl

- Init EHO L

Parameter description:

Par.type| Parameter Data type | Description

IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.
Position DINT Dimension setting position [Inc]
Value range: - 2147483648..2147483647, initial value: 0.
Mode BOOL FALSE: Set current motor position as Position.

TRUE: Add Position to current motor position.

IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.|63]. |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |

Operating principle:

Specifying the dimension reference relative to the current motor position Set dimensions allows the
current motor position to be defined as the new axis reference point to which all subsequent
position data relate. Set dimensions shifts the reference point for setpoint positions to the new
dimension setting position.

Set dimensions can be used to carry out a continuous absolute positioning without exceeding the
positioning limits.

BERGER LAHR 24/66

we control motion

Step 7 Motion library for IFS, IFE, and IFA

| PCopen)—
“lmotion |
{comirol |

8.6.2 MC_Home_IFx

Task:

Executing the reference movement.

Calling:

"AC_Home_IFx"

—EHN

- Execute
—Pazition

- Homefod e

o WHome

— MOUtHome

= POUtH ome

— P01 sHuome

— Receleration
- Rris

—Init

Daone

Busy

CommandAborted

Error o

END [

Parameter description:

Par. type | Parameter

| Data type

Description

IN Execute

BOOL

FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.

Position

DINT

Position is set as current motor position after successful reference
movement [Inc].
Value range: - 2147483648..2147483647, initial value: 0.

HomeMode

INT

1 = LIMP Reference movement up to positive limit switch

2 = LIMN Reference movement up to the negative limit switch

3 = REFZ Reference movement up to reference switch using
counter-clockwise rotation

4 = REFZ Reference movement up to reference switch using
clockwise rotation

5 = Reference movement up to index pulse using counter-clockwise
rotation

6 = Reference movement up to index pulse using clockwise rotation
7 = Block movement using counter-clockwise rotation

8 = Block movement using clockwise rotation

9 = set dimensions

VHome

INT

Speed for searching the limit or reference switch [rpm]. Drive stops
when switching edge has been detected.

IFS: 1..3000, initial value: 60.

IFE: 300..5000, initial value: 1000.

IFA: 1..6000, initial value: 60.

VOutHome

INT

Speed for clearance movement back to the switching edge [rpm].
The max. travel distance when searching for the switching edge can
be restricted with the parameter POutHome.

IFS: 1..3000, initial value: 6.

IFE: 300..5000, initial value: 500.

IFA: 1..6000, initial value: 6.

BERGER LAHR

we control motion

25/66

—[PLCopen]—

“lmotion

Step 7 Motion library for IFS, IFE, and IFA {control |
Par. type | Parameter Data type ‘ Description ‘
POutHome DINT Run-off [Inc], i.e. max. travel distance when searching for the

switching edge. If the switching edge is not found in this distance, the
reference movement is interrupted with an error.
Value range: 1..2147483647 [Inc], initial value: 200000 [Inc].

IN PDisHome DINT Distance between switching edge and reference point [Inc]. At end of
movement, the drive moves back towards switching edge until the
distance has been reached.

Value range: 1..2147483647, initial value: 200.

Acceleration DINT Value for the acceleration ramp gradient [(rpm/s2)]
Value range:

IFS: 1..765000, initial value: 2500.

IFE: 1000..10000, initial value: 2500.

IFA: 1..250000, initial value: 600.

IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.|63]. |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
CommandAborted | BOOL | TRUE: Block execution has been aborted. |
Error | BOOL | TRUE: An error has occurred during execution. |

Operating principle:

With the reference movement a defined position on the axis is approached. The defined position is
specified by a mechanical switch: Limit switch, reference switch.

There are six standard reference movements:

1. Movement to positive limit switch LIMP.

2. Movement to negative limit switch LIMN.

3. Search for the reference switch REF using clockwise rotation.

4. Search for the reference switch REF using counterclockwise rotation.

5. Block (IFE) or index pulse (IFS with index pulse and IFA) using clockwise rotation.

6. Block (IFE) or index pulse (IFS with index pulse and IFA) using counterclockwise rotation.

A reference movement can be executed with or without an index pulse.
o Reference movement without index pulse

Movement from switching edge to a parametrisable distance from the switching edge.
o Reference movement with index pulse

Movement from the switching edge to the next index pulse of the encoder.

For the reference movement, search speed (VHome), clearance speed (VOutHome), safety
distance (PDisHome) and the clearance path (POutHome) are adjustable. A reference movement
must be completed for the new reference point to be valid. If a reference movement has been
aborted, it must be restarted.

The motor moves as a function of these parameters until it reaches its target or the operating
mode is interrupted by the execution of another block (e.g. MC_Stop).

Any attempt to accept changed parameters by means of a rising edge at Execute during a homing
movement is not allowed, and results in an error.

After successful completion of the reference movement, a reference position is created
automatically. In this way, the reached position is defined as the absolute reference position, and
is set as the value of Position.

BERGER LAHR 26/66

we control motion

—[PLCopen|—
“liotion —
Step 7 Motion library for IFS, IFE, and IFA {comirol |

8.7 Profile position mode

In the profile position operating mode, the motor is positioned from a point A to a point B by means
of a positioning block.

8.7.1 MC_MoveAbsolute IFx

Task:
Starting and monitoring the profile position operating mode with an absolute target position.

Calling:

"HE:_HoveRbzolute IFx™
—EH
— Execute
—Fozition Dane |
— Velacity Busu
— Aceleration CommandAborted
— Rxiz Errar

—Init ENOL

Parameter description:

Par.type| Parameter | Data type | Description
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.

TRUE: Rising edge starts block execution.

Position DINT Value for the absolute target position [Inc].
Value range: - 2147483648..2147483647, initial value: 0.

Velocity INT Value for the set speed for movement [rpm].
IFS: 0..3000, initial value: 60.

IFE: 0..5000, initial value: 1000.

IFA: 0..n_maxDrv 1, initial value: 60.

Acceleration DINT Value for the acceleration ramp gradient [(rpm/sz)]
Value range:

IFS: 1..765000, initial value: 2500.

IFE: 1000..10000, initial value: 2500.

IFA: 1..250000, initial value: 600.

IN_OUT | Axis I STRUCT I Axis reference [AxisDB.AxisReference]. I
Init | BOOL | Initialisation bit [Init.0 .. Init.163]. |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
CommandAborted | BOOL | TRUE: Block execution has been aborted. |
Error | BOOL | TRUE: An error has occurred during execution. |

! With the IFA, the max. value of the set speed depends on the motor type, and can be determined with the help of the
device documentation or with the block MC_ReadParameter_IFx via the Object (300Fh:12h).

BERGER LAHR 27166

we control motion

—[PLCopen]—

“lotion —
Step 7 Motion library for IFS, IFE, and IFA {comirol |

Operating principle:

Positioning on the target position Position at speed Velocity, and with absolute reference to the
axis zero point. The motor moves as a function of these parameters until it reaches its target, a
new reference value is entered, or the operating mode is interrupted by the execution of another
block (e.g. MC_Stop).

Note:
Before an absolute positioning, the reference point must be defined by homing.

Phase diagram:

Start Acceptance of new input parameters

Execute _I I__| |_|
]

Busy l_l
Done I I

Motion /——/—\ /_

BERGER LAHR 28/66

we control motion

—{ Prcopet}
“lmotion |
Step 7 Motion library for IFS, IFE, and IFA {Control |

8.7.2 MC_MoveAdditive IFx

Task:

Starting and monitoring the profile position operating mode with a target position relative to the
current target position.

Calling:

"Hi_Hoveldditive IFx"
— EH

— Execute
—Distance Done [
— Velacity Busy |
— Receleration CommandAborted
— Rxis Error

—Init ENOL

Parameter description:

Par. type | Parameter | Data type | Description
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.

TRUE: Rising edge starts block execution.

Distance DINT Value for the travel distance that is added to the current target
position, and thus determines the new target position [Inc].
Value range: - 2147483648..2147483647, initial value: 0.

Velocity INT Value for the set speed for movement [rpm].
IFS: 0..3000, initial value: 60.

IFE: 0..5000, initial value: 1000.

IFA: 0..n_maxDrv 1, initial value: 60.

Acceleration DINT Value for the acceleration ramp gradient [(rpm/s?)]
Value range:

IFS: 1..765000, initial value: 2500.

IFE: 1000..10000, initial value: 2500.

IFA: 1..250000, initial value: 600.

IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
CommandAborted | BOOL | TRUE: Block execution has been aborted. |
Error | BOOL | TRUE: An error has occurred during execution. |

! With the IFA, the max. value of the set speed depends on the motor type, and can be determined with the help of the
device documentation or with the block MC_ReadParameter_IFx via the Object (300Fh:12h).

Operating principle:
Positioning with a travel distance Distance referred to the current target position at speed Velocity.

The motor moves as a function of these parameters until it reaches its target, a new reference
value is entered, or the operating mode is interrupted by the execution of another block (e.g. MC_Stop).

BERGER LAHR 29/66

we control motion

—{PLcopenl -

-

“lmotion

Step 7 Motion library for IFS, IFE, and IFA {control |

8.8 Velocity mode

8.8.1 MC_MoveVelocity_IFx

Task:

Starting and monitoring the velocity mode.

Calling:

"HC_Hoveleloei ty_IFx"

—EH

—Execute Inlelocityl

— Nelocity Biusy |

— Rzceleratian CommandAborted

— Hxis Errar_

—Init ENO

Parameter description:

Par. type ‘ Parameter ‘ Data type | Description
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.
Velocity INT Value for the set speed for movement [rpm].

Value range:

IFS: -3000..3000, initial value: 0.
IFE: -5000..-300, 300..5000 1, initial value: 0.
IFA: -n_maxDrv..n_maxDrv 2 initial value: 0.

Acceleration DINT Value for the acceleration ramp gradient [(rpm/s2)]
Value range:

IFS: 1..765000, initial value: 2500.

IFE: 1000..10000, initial value: 2500.

IFA: 1..250000, initial value: 600.

IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT InVelocity | BOOL | TRUE: Set speed reached |
Busy | BOOL | TRUE: Block is being executed. |
CommandAborted | BOOL | TRUE: Block execution has been aborted. |
Error | BOOL | TRUE: An error has occurred during execution. |

1With the IFE, set speeds of -300 to 300 rpm are not permitted (except for 0).

2 With the IFA, the max. value of the set speed depends on the motor type, and can be determined with the help of the
device documentation or with the block MC_ReadParameter_IFx via the Object (300Fh:12h).

Operating principle:
In velocity mode, the motor receives a set speed via the parameter Velocity, and a movement
without a target position is started.

The motor moves as a function of this setpoint until a new reference value is entered, or the
operating mode is interrupted by the execution of another block (e.g. MC_Stop).

BERGER LAHR 30/66

we control motion

| PLCopen]

| i
Imotion [
Step 7 Motion library for IFS, IFE, and IFA {Control |

8.9 Electronic gear

In the electronic gear mode the positioning controller calculates a new position setpoint for the
motor movement from a position preset and an adjustable gear ratio. This mode is used if one or
more motors is to follow the reference signal from a NC controller or an encoder.

For the electronic gear operating mode, the reference signals must be applied to the optional slot
(CN2). If reference pulses are applied, the positioning controller offsets them with the gear ratio,
and positions the motor at the new setpoint position.

Position values are given in internal increments. If the values change, the positioning controller
follows immediately. The electronic gear mode is not limited by the positioning area boundaries.

The gear ratio is the relationship between the motor increments and the externally applied
reference pulses for motor movement. The gear ratio is determined with numerator and
denominator. A negative numerator reverses the direction of rotation. The resulting positioning
path is dependent upon the current motor resolution.

Notes
This function is only available in drive IFA.

Synchronisation: Before the electronic gear operating mode is started, there is no
synchronisation between reference pulses and motor.

In case of a compensation movement (SyncMode = TRUE), motor movement is only limited by the
max. current (device parameter Settings.l_max, see manual) and the drive's max. speed.

As soon as gear processing is enabled, the control deviation due to the accumulated pulses may
not be greater than the tracking error limit (device parameter "Settings.p_maxDif2", see manual).
Otherwise, the drive will signal a tracking error.

In case of immediate synchronisation (SyncMode = FALSE) the motor will follow the reference
pulses, starting from the time when gear processing is enabled in the drive.

Direction enable: Before enabling gear processing, the direction of a compensation movement
can be specified (device parameter "Gear.dirEnGear", see manual). For correct enabling of a
direction, the direction inversion must be taken into account, which can be determined via the
device parameter "Motion.invertDir" (see manual).

IiERGEit I.AHR 31/66

we control motion

—{PLcopenl -

-

“lhotion |

Step 7 Motion library for IFS, IFE, and IFA {eontrol |
8.9.1 MC_Gearln_IFx
Task:
Starting and monitoring the electronic gear operating mode with a gear ratio.
Calling:
"AC_GearIn_IFx"
—EH
- Execute
— Sunciode InGear |
- RatioHumerator Busy Lo
—RatieDeneminator CommandAborted |
- Rris Error .
—Init END [
Parameter description:
Par. type ‘ Parameter ‘ Data type | Description
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.
SyncMode BOOL FALSE: Real-time synchronisation. The positioning controller

follows the reference pulses from the time at which gear
processing is enabled. Reference pulses that occur before the
operating mode is started, are ignored.

TRUE: Synchronisation with compensation movement. After
gear processing has been enabled, the motor attempts to
execute the accumulated reference pulses.

RatioNumerator INT Gear ratio numerator.
Value range: -32768 .. 32767, initial value: 1.

RatioDenominator | INT Gear ratio denominator.
Value range: 1 .. 32767, initial value: 1.

IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.10 .. Init.163]. |
ouT InGear ‘ BOOL ‘ FALSE: The electronic gear is disabled.
TRUE: The electronic gear is enabled.
Busy | BOOL | TRUE: Block is being executed. |
CommandAborted | BOOL | TRUE: Block execution has been aborted. |
Error | BOOL | TRUE: An error has occurred during execution. |

Operating principle:

In the electronic gear operating mode, the motor is supplied continuously with calculated position
presets in the form of reference pulses at the encoder input in combination with the gear ratio
(parameters Numerator and Denominator).

The motor moves as a function of this setpoint until it receives a new gear ratio. Operation is
terminated by execution of the block MC_GearOut_IFx or by execution of another block (e.g. MC_Stop).

BERGER LAHR 32/66

we control motion

—[PLCopen]—

| ol
b

“limotion

Step 7 Motion library for IFS, IFE, and IFA {control |
8.9.2 MC_GearOut_IFx
Task:
Switch-off of the electronic gear operating mode.
Calling:
"AC_GearOut_IFx"
Done L
—EH
Busw
—Execute
. Commandiborted
I
. Errar
— Init
EHO |
Parameter description:
Par. type | Parameter | Data type | Description
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.
IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference].
Init | BOOL | Initialisation bit [Init.I0 .. Init.|63].
ouT Done | BOOL | TRUE: Block execution was completed successfully.
Busy | BOOL | TRUE: Block is being executed.
CommandAborted | BOOL | TRUE: Block execution has been aborted.
Error | BOOL | TRUE: An error has occurred during execution.

Operating principle:
With enabled electronic gear operating mode, the motor is directly uncoupled from the gear

master, and braked to a standstill by means of a torque ramp. This interrupts the active block
MC_Gearln_IFx, which in turn signals CommandAborted = TRUE.

BERGER LAHR 33/66

we control motion

—[PLCopen]—

“lotion —
Step 7 Motion library for IFS, IFE, and IFA {comirol |

8.10 Stopping

8.10.1 MC_Stop_IFx

Task:
Stopping the drive with a torque ramp.

Calling:

"HE_Stop_IFx"
— EN Done
— Execute Busy
— hxis Errar
— Init EHO

Parameter description:

Par. type ‘ Parameter ‘ Data type ‘ Description ‘
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.
IN_OUT Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init. 0 .. Init.163]. |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |

Operating principle:

Every operating mode can be terminated by stopping the drive. This does not generate an error.
The interrupted movement block terminates its execution with CommandAborted = TRUE, and the
drive changes to the status "Stopping". This status remains active until the drive is at a standstill
and the block's input Execute has been reset. The status then changes to “Standstill*, and
movement blocks can be started again.

Note:
This function cannot be interrupted by other movement blocks. As long as Execute = TRUE, no
other movement block can be started. Also after standstill the drive remains blocked.

The block brakes the motor with a torque ramp. The parameter LIM_I_maxHalt (see manual)
determines the current for the torque ramp. After drive standstill an internal position compensation
is executed, the position control is enabled, and the motor is stopped with the power amplifier
active.

BERGER LAHR 34/66

we control motion

| PCopen)—
Tlimotion [~
Step 7 Motion library for IFS, IFE, and IFA {comirol |

8.11 Fast position capture

The motor position can be captured with a precision of 10 ps delay by means of 2 parametrisable
channels. Two signal inputs CAP1 and CPAZ2 are available for capturing the trigger signals.

Notes

This function is only available in drives IFA and IFS.

8.11.1 MC_TouchProbe_IFx

Task:
Adjusting, starting, and monitoring the fast position capture.

Calling:
"HC_TouchFrobe _IFx™

—EN

— Execute Done [
— Channel Busy
— TriggerLevel CommandAborted
—SinqleShot Errarl_
— hxis RecardedPositionl_
— Init EHD L

Parameter description:

Par. type ‘ Parameter ‘ Data type | Description
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.

TRUE: Rising edge starts block execution.

Channel UINT Channel number: Selection of the channel to which the other
parameters are referred (1 = CAP1, 2 = CAP2).
Value range: 1 .. 2, initial value: 1.

TriggerLevel BOOL Triggering signal edge.
FALSE: falling edge
TRUE: rising edge

SingleShot BOOL FALSE: If the triggering event occurs repetitively, the recorded
position is overwritten with the most recent position.

TRUE: Position capture is disabled after the triggering event has
occurred, so that the recorded position cannot be overwritten.
Initial value: TRUE.

IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.0 .. Init.|63]. |
BERGER LAHR 35/66

we control motion

—{PLcopenl -

“lmotion

Step 7 Motion library for IFS, IFE, and IFA {control |
Par. type | Parameter | Data type | Description |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |

Busy | BOOL | TRUE: Block is being executed. |

CommandAborted | BOOL | TRUE: Block execution has been aborted. |

Error | BOOL | TRUE: An error has occurred during execution. |

RecordedPosition | BOOL ‘ Recorded motor position when the triggering event occurs [Inc].
Value range: -2147483648 .. 2147483647, initial value: 0.

Operating principle:

Fast position capture serves to detect the current motor position at the time when a digital 24V
signal appears at one of the two capture inputs (102 = CAP1, 103 = CAP2).

Hereby, the motor position can be detected by means of a falling edge at the corresponding input
(Channel).

Moreover, the parameter SingleShot can be used to determine whether position capture is to be
executed once or continuously.

In case of a single position capture, the block is terminated with Done = TRUE as soon as the
adjusted edge (TriggerLevel) occurs, and signals the detected position (RecordedPosition).

In case of continuous position capture, the block signals the most recently detected position
(RecordedPosition) with every occurring edge, whereby the previous position is overwritten. The
block does not terminate itself — it can only be interrupted with MC_AbortTrigger_IFx.

BERGER LAHR 36/66

we control motion

| PLC open

| i |

lmotion
Step 7 Motion library for IFS, IFE, and IFA {control |
8.11.2 MC_AbortTrigger_IFx
Task:
Terminating an active position capture.
Calling:
“HC_RbortTrigqer_IF:"

—EH
— Execute Done
— Channel Busy [
- iz Errorf.
—Init ENO
Parameter description:

Par.type‘ Parameter ‘ Data type | Description

IN Execute BOOL FALSE: Deletes the output parameter when block has been

executed.

TRUE: Rising edge starts block execution.

Channel INT 1: Terminates position capture on channel 1 (CAP1).
2: Terminates position capture on channel 2 (CAP2).
Value range: 1 .. 2, initial value: 1.

IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference].
Init | BOOL | Initialisation bit [Init. 0 .. Init.163].

ouT Done | BOOL | TRUE: Block execution was completed successfully.
Busy | BOOL | TRUE: Block is being executed.
Error | BOOL | TRUE: An error has occurred during execution.

Operating principle:
The active position capture is disabled for the corresponding Channel.
For this channel, the block MC_TouchProbe_IFx signals CommandAborted = TRUE.

BERGER LAHR 37/66

we control motion

| PLC open

| i |

“lmotion [~
Step 7 Motion library for IFS, IFE, and IFA {control |
8.12 Read parameter
8.12.1 MC_ReadParameter_IFx
Task:
Reading an Object from the Deviceparameter list.
Calling:
"HE_RdPar_IFx"
— EH
—Enable Walid|
— Farameterbumber Buzy
— Index Error |
— Subindex Valuel
— Rxiz Lengthl_
— Init ENO [
Parameter description:
Par. type ‘ Parameter ‘ Data type | Description
IN Enable BOOL FALSE: Terminates block execution.
TRUE: Starts block execution.
ParameterNumber | INT 0: The parameter is selected with Index.
1: Current setpoint position of the profile generator [Inc].
10: Current actual speed [rpm].
11: Current set speed [rpm].
Other numbers are not supported.
Value range: 0..32767, initial value: 0.
Index INT Index of the Object to be read — the Objects are listed in the
manual with their index and sub-index. Only valid with
ParameterNumber = 0.
Value range: 0..32767, initial value: 0.
sub-index INT Sub-index of the Object to be read — the Objects are listed in the
manual with their index and sub-index. Only valid with
ParameterNumber = 0.
Value range: 0..32767, initial value: 0.

IN_OUT | Axis STRUCT | Axis reference [AxisDB.AxisReference].

| |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Valid | BOOL | TRUE: The value to be read is available. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |
Value DINT Value of the parameter to be read.
Value range: -2147483648..2147483647, initial value: 0.
Length INT Length of the parameter to be read [bytes].
Value range: 1..4, initial value: 0.
BERGER LAHR 38/66

we control motion

Step 7 Motion library for IFS, IFE, and IFA

| i

“lhotion —

{comirol |

8.12.2 MC_ReadStatus_IFx

Task:

Reading the drive's current status.

Calling:

"HC_RdStatuz_IFx"

— EN
— Enable
— iz

- Init

01
Caont

Sunchr

Cons

Decelerating |

Walid|

Buzy

Error |
Errorstop o
Dizabled|
Stopping |
Referenced
StandSta11[
seratefotion
inuousHotion
onizeddotion
Homing
tantWelacity |

fecelerating

ENO [

Parameter description:

Par. type ‘ Parameter

‘ Data type ‘ Description

|
IN Enable ‘ BOOL ‘ FALSE: Terminates block execution. ‘
TRUE: Starts block execution.
IN_OUT | Axis I STRUCT I Axis reference [AxisDB.AxisReference]. I
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Valid ‘ BOOL ‘ TRUE: The read status is valid. ‘
FALSE: The status is not (yet) valid.
Busy | BOOL | TRUE: Block is being executed. I
Error | BOOL | TRUE: An error has occurred during execution. |
Errorstop | BOOL | TRUE: The axis is in a fault condition. |
Disabled | BOOL | TRUE: Motor current is ‘off’. |
Stopping ‘ BOOL ‘ TRUE: The axis has been stopped and is still being blocked by ‘
the block MC_Stop_IFx.
Referenced | BOOL | TRUE: The drive is ready. |
StandStill | BOOL | TRUE: The drive is stopped. |
DiscreteMotion I BOOL I TRUE: The drive is in a profile position operating mode. I

BERGER LAHR

we control motion

39/66

—[PLCopen|—
“liotion —
Step 7 Motion library for IFS, IFE, and IFA {comirol |

Par. type | Parameter | Data type | Description |
ouT ContinuousMotion | BOOL ‘ TRUE: The drive is in an operating mode without a defined target
position (MC_Jog_IFx, MC_MoveVelocity IFx).

SychronizedMotion | BOOL I The drive is in the electronic gear operating mode (only IFA). |
Homing | BOOL | TRUE: The drive is in the homing operating mode. |
ConstantVelocity | BOOL | TRUE: The drive is running at a constant speed. |
Accelerating | BOOL | TRUE: The drive is accelerating. |
Decelerating | BOOL | TRUE: The drive is slowing down. |

Operating principle:
The drive's current status information is being read and output. These are only valid in connection
with the parameter Valid.

Note:

At any time, the drive is in only one of the states StandStill, Homing, DiscreteMotion,
ContinuousMotion, SynchronizedMotion, Stopping, Disabled or Errorstop. The correspondingly
named output of the block is then TRUE.

The same applies for the movement conditions ConstantVelocity, Accelerating, and Decelerating.

BERGER LAHR 40/66

we control motion

~[PiCopaa}
{1
“lmotion [

Step 7 Motion library for IFS, IFE, and IFA {control |

8.12.3 MC_ReadActualPosition_IFx

Task:
Reading the motor's actual position in increments.

Calling:
"HC_RdAetPos_IFx" vatidl
— EH
Busy [
—Enable
Error o
— Rxiz
; Fosition|
— Inmt
EHO L
Parameter description:
Par. type | Parameter | Data type | Description |
IN Enable BOOL FALSE: Terminates block execution.
TRUE: Starts block execution.
IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 ... Init.163]. |
ouT Valid | BOOL | TRUE: The value to be read is available. |
Busy | BOOL | TRUE: Block is being executed. I
Error | BOOL | TRUE: An error has occurred during execution. |
Position DINT Motor's current actual position [Inc].
Value range: -2147483648..2147483647, initial value: 0.

BERGER LAHR 41/66

we control motion

~[PiCopaa}
{1
“lmotion [

Step 7 Motion library for IFS, IFE, and IFA {control |

8.12.4 MC_ReadActualVelocity_IFx

Task:
Reading the motor's current speed in rpm.

Calling:
“HC_RdAetWel_IFx" T
—EH B
Busy [
—Enable
. ErrarlL
— hx1=
; Weloedty |
— Inmt
EHO L
Parameter description:
Par. type | Parameter | Data type | Description |
IN Enable BOOL FALSE: Terminates block execution.
TRUE: Starts block execution.
IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Valid | BOOL | TRUE: The value to be read is available. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |
Velocity DINT Motor's current speed [rpm].
Value range: -2147483648..2147483647, initial value: 0.

BERGER LAHR 42/66

we control motion

Step 7 Motion library for IFS, IFE, and IFA

_i PLEopen il
{2
“lmotion

{comirol |

8.12.5 MC_ReadRefPosition_IFx

Task:
Reading the movement profile generator's current position in increments.

Calling:
"HC_R dRe fPos_IFx" T
—EH B
Busy [
—Enable
Error o
— Rxiz
; Fosition|
— Inmt
EHO L
Parameter description:
Par. type | Parameter | Data type | Description |
IN Enable BOOL FALSE: Terminates block execution.
TRUE: Starts block execution.
IN_OUT Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Valid | BOOL | TRUE: The value to be read is available. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |
Position DINT Actual position of movement profile generator [Inc].
Value range: -2147483648..2147483647, initial value: 0.

BERGER LAHR 43/66

we control motion

~[PiCopaa}
{1
“lmotion [

Step 7 Motion library for IFS, IFE, and IFA {control |

8.12.6 MC_ReadRefVelocity_IFx

Task:
Reading the movement profile generator's current speed in rpm.

Calling:
"HC_R dRe fUel_IFx" vatidl
—EH
Busy [
—Enable
Error o
— Rxiz
; Weloedty |
— Inmt
EHO L
Parameter description:
Par. type | Parameter | Data type | Description |
IN Enable BOOL FALSE: Terminates block execution.
TRUE: Starts block execution.
IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Valid | BOOL | TRUE: The value to be read is available. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |
Velocity INT Current speed of the movement profile generator [rpm].
Value range: -32768..32767, initial value: 0.

BERGER LAHR 44/66

we control motion

Step 7 Motion library for IFS, IFE, and IFA

~[PiCopaa}
{1
“lmotion [

{comirol |

8.12.7 MC_ReadActualMasterPosition_IFx

Task:
Reading the encoder's current position in increments.

Calling:
"AC_RdActdasterPos_IFx" vatidl
—EH
Busw
—Enahle
Error o
— Rxiz
; Position|
— Init
END L
Parameter description:
Par. type | Parameter | Data type | Description |
IN Enable BOOL FALSE: Terminates block execution.
TRUE: Starts block execution.
IN_OUT Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Valid | BOOL | TRUE: The value to be read is available. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |
Position DINT Current position of the external encoder [Inc].
Value range: -2147483648..2147483647, initial value: 0.

BERGER LAHR 45/66

we control motion

Step 7 Motion library for IFS, IFE, and IFA

{ e,
“lmotion
{comirol |

8.12.8 MC_ReadActualMasterVelocity_IFx

Task:

Reading the external encoder's current speed in increments per second.

Calling:

— EN
—Enable
— i

—Init

"HE_RdActHasterVel _IFx"

Valid[_
Busy [
Error_

Peloeity |

END [

Parameter description:

Par. type ‘ Parameter

| Data type ‘ Description

|
IN Enable ‘ BOOL ‘ FALSE: Terminates block execution. ‘
, TRUE: Starts block execution.
IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init. 0 .. Init.163]. |
ouT Valid | BOOL | TRUE: The value to be read is available. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |
Velocity

‘ DINT ‘ Current speed of the external encoder [Inc/s].

Value range: -2147483648..2147483647, initial value: 0.

BERGER LAHR

we control motion

46/66

—{PLcopenl -

-

“lhotion |

Step 7 Motion library for IFS, IFE, and IFA {eontrol |
8.12.9 MC _UploadParameter_IFx
Task:
Reading all variable parameters and store them in the parameter list.
Calling:
"AC_UploadParameter_IFx"
— EH Done [
— Execute Busy
—Data Error
— Rxiz Errorinfol
—Init EHO |
Parameter description:
Par-typ | Parameter | Datentyp | Bedeutung
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.
Data | ANY | Structure for the read data. |
IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.63]. |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |
Errorinfo DWORD | Additional error information, address of the error.
High Word: DB-Number, Low Word: parameter address in the DB
Value range: 16#0..16#FFFFFFFF, initial value: 16#0.

Operating principle:

The list of the variable parameters is defined in the library in the UDT12 by the structure Data. For
uploading the parameters a structure from the UDT12 has to be created in a Shared DB and this
structure has to be hand over to the input Data of the function block. The read parameters will be
written into this structure.

Note:

With the two blocks MC_UploadParameter_LXMO05 and MC_DownloadParameter_IFx, a defective
device can be exchanged without a special tool to parameterize the device.

BERGER LAHR 47/66

we control motion

Step 7 Motion library for IFS, IFE, and IFA

_;_r"—ti:"o_ﬁ_
“lmotion
{comirol |

8.13 Write parameter

8.13.1 MC_WriteParameter_IFx

Task:

Writing an Object from the Deviceparameter list.

Calling:

— EM

— Execute

= Parameterdumber

— alue

“HC_WritePar_IFx"

— L
— Subindex Dane |
- Length Busy [
— hxiz Errorl
- Init END
Parameter description:
Par. type ‘ Parameter Data type | Description
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.
ParameterNumber INT 0: The parameter is selected with Index.
Other numbers are not supported.
Value range: 0..32767, initial value: 0.
Value DINT Value of the parameter to be written.
Value range: -2147483648..2147483647, initial value: 0.
Index INT Index of the Object to be read — the Objects are listed in the
manual with their index and sub-index. Only valid with
ParameterNumber = 0.
Value range: 0..32767, initial value: 0.
sub-index INT Sub-index of the Object to be read — the Objects are listed in the
manual with their index and sub-index. Only valid with
ParameterNumber = 0.
Value range: 0..32767, initial value: 0.
Length INT Length of the parameter to be written [bytes].
Value range: 1..4, initial value: 0.
IN_OUT Axis | STRUCT I Axis reference [AxisDB.AxisReferencel]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.|63]. |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |

BERGER LAHR

we control motion

48/66

—[PLCopen]—
{ o

“limotion|
Step 7 Motion library for IFS, IFE, and IFA {control |
8.13.2 MC_ResetParameters_IFx
Task:
Resetting the User parameters to the factory settings.
Calling:
"AC_ResetPar_IFx”
— EN Done
— Execute Eiuzy
— Rxiz Error
—Init END
Parameter description:
Par. type | Parameter | Data type | Description
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.
IN_OUT Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |

Operating principle:

All the User parameters are reset to their default values, and stored in the EEPROM. To enable
the default values, the device must be switched off/on.

Note:

All parameter values adjusted by the user will be lost if a backup has not been previously made
with the commissioning software.

Enabling the default settings is only possible with the drive at standstill.

BERGER LAHR 49/66

we control motion

Step 7 Motion library for IFS, IFE, and IFA

| PLC open

| ol

hmotion|
{comirol |

8.13.3 MC_StoreParameters_IFx

Task:

Saving all the User parameters in a non-volatile memory (EEPROM).

Calling:

—EN

"HC_StorePar_IF:"

Oune

— Execute Busy
— Rxiz Error
—Init END
Parameter description:
Par. type | Parameter | Data type Description
IN Execute BOOL FALSE: Deletes the output parameter when block has been ‘
executed.
TRUE: Rising edge starts block execution.
IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |

Operating principle:

All the User parameters are stored in a nhon-volatile memory (EEPROM).

Note:

Saving the User parameters is only possible with the drive at standstill.

BERGER LAHR

we control motion

50/66

—{PLcopenl -

“lmotion|

Step 7 Motion library for IFS, IFE, and IFA {eontrol |
8.13.4 MC_DownloadParameter_IFx
Task:
Writing all variable parameters out of the parameter list to the drive.
Calling:
"HE_DownloadFarameter_IFx™
— EH Done [
— Execute Busy
—Data Error
— Rxiz Errorinfol
—Init EHO |
Parameter description:
Par-typ | Parameter | Datentyp | Bedeutung
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.
Data | ANY | Structure with the writing data. |
IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.63]. |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |
Errorinfo DWORD | Additional error information, address of the error.
High Word: DB-Number, Low Word: parameter address in the DB
Value range: 16#0..16#FFFFFFFF, initial value: 16#0.

Operating principle:

The list of the variable parameters is defined in the library by the UDT13. For downloading the
parameters a structure from the UDT13 has to be created in a Shared DB and this structure has to
be hand over to the input Data of the function block. The parameters to be written will be taken out
of this structure.

Note:

It is recommended to make an upload of all parmeters with the function block
MC_UploadParameters |IFx before downloading the parameters within this function block. The
initialisation values of the parameter list may not be equal to the default values of those in the
drive. After uploading the prameters it is possible to change the data in the defined structure and
then execute the download.

BERGER LAHR 51/66

we control motion

—[PLCopen]—
“lmotion |
Step 7 Motion library for IFS, IFE, and IFA {Control |

8.14 Inputs/outputs

Apart from the process image, in which the digital inputs and outputs of the target system are
displayed, other blocks are available, which provide access to the digital inputs/outputs of every
drive in the system. The drive's 24V signal interface provides 4 programmable inputs and/or
outputs, which can be assigned with functions.

8.14.1 MC_ReadDigitallnput_IFx

Task:

Reading the drive's current input status.

Calling:
“HC_RdD1qInput_IFzx™ Walid
— EN B
Busy [
—Enable
Error
— Inputlumber
) Value
— hx1=
. Inputs |
- Imt
EHO |
Parameter description:
Par. type ‘ Parameter ‘ Data type | Description
IN Enable BOOL FALSE: Terminates block execution.
TRUE: Starts block execution.
InputNumber INT Number of the input that is to be read:
(U [e]V]
1: 10U
2:10U
3:10U
Value range: 0..3, initial value: 0.
IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Valid | BOOL | TRUE: The value to be read is available. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |
Value BOOL TRUE: The read input (InputNumber) has a 24V signal level.
FALSE: The read input (InputNumber) has a 0V signal level.
Inputs WORD Overall input status (regardless of InputNumber):
I00 = Bit 0, 101 = Bit 1, I02 = Bit 2, 103 = Bit 3.
Value range: 00h..0OFh, initial value: 00h.

BERGER LAHR 52/66

we control motion

| i

“lmotion —
Step 7 Motion library for IFS, IFE, and IFA {control |
8.14.2 MC_ReadDigitalOutput_IFx
Task:
Reading the drive's current output status.
Calling:
"HC_R D7 gOutput_IFx" T
— EN B
Busy [
—Enable
Error
— Dutputbumber
Walue |
— i
. Outputs |
- Imt
ENO
Parameter description:
Par. type ‘ Parameter | Data type | Description
IN Enable BOOL FALSE: Terminates block execution.
TRUE: Starts block execution.
OutputNumber INT Number of the output that is to be read:
0: 10U
1: 10U
2: 10U
3:10U
Value range: 0..3, initial value: 0.
IN_OUT Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Valid | BOOL | TRUE: The value to be read is available. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |
Value BOOL TRUE: The read output (OutputNumber) has a 24V signal level.
FALSE: The read output (OutputNumber) has a 0V signal level.
Outputs WORD Overall output status (regardless of OutputNumber):
100 = Bit 0, 101 = Bit 1, 102 = Bit 2, 103 = Bit 3
Value range: 00h..0OFh, initial value: 00h.

BERGER LAHR 53/66

we control motion

| PLC open

| i |

“lmotion [~
Step 7 Motion library for IFS, IFE, and IFA {eontrol |
8.14.3 MC_WriteDigitalOutput_IFx
Task:
Writing the drive's output status.
Calling:
“HE_WriteDd qgdutput_IFx"
— EN
- Execute
— Outputbumber
- alue
— AT 10utputs Done
- Qutputs Buzy e
— hxiz Errorl
- Init END
Parameter description:
Par. type | Parameter | Data type | Description
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.
OutputNumber INT Number of the output that is to be written:
0:10 0:
1:10 1:
2:10 2:
3:10 3:
Value range: 0..3, initial value: O.
Value BOOL FALSE: Resets the output (0V signal level)
TRUE: Sets the output (24V signal level)
AllOutputs BOOL FALSE: Writes one output (OutputNumber, value is valid)
TRUE: Write all outputs (outputs valid)
Outputs WORD Overall output status (regardless of OutputNumber):
I00 = Bit 0, 101 =Bit 1, 102 = Bit 2, 103 = Bit 3
Value range: 00h..0OFh, initial value: 00h.

IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference].
Init | BOOL | Initialisation bit [Init. 0 .. Init.163].
ouT Done | BOOL | TRUE: Block execution was completed successfully.
Busy | BOOL | TRUE: Block is being executed.
Error | BOOL | TRUE: An error has occurred during execution.
Note:

This block can only be used for I/Os that have been configured as outputs (see manual or
description in the next section).

BERGER LAHR 54/66

we control motion

| PLC open

| i |

“lmotion —
Step 7 Motion library for IFS, IFE, and IFA {control |
8.14.4 MC_ConfigurelO_IFx
Task:
Configuring and enabling the inputs/outputs.
Calling:
“HC_ConfiqureI0_IFx"
— EN
- Execute
— I0Humber Done
— Configquration Busy
— hxiz Errorl
- Init END
Parameter description:
Par. type | Parameter | Data type Description
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.
IONumber INT Number of the input/output that is to be configured:
0:10 0:
1:10 1:
2:10 2:
3:103:

Value range: 0..3, initial value: O.

Configuration INT Configuration:

0: Input; freely usable

1: LIMP; input for positive limit switch (only possible for 100)
2: LIMN; input for negative limit switch (only possible for 101)
3: STOP; Stop input

4: REF; input for reference switch

5: Input programmable (see MC_ControllO_IFx)

128: Output; freely usable

129: Output; index pulse (only possible for 100)

130: Output programmable (see MC_ControllO_IFx)

IN_OUT Axis | STRUCT | Axis reference [AxisDB.AxisReference].
Init | BOOL | Initialisation bit [Init.I0 .. Init.63].
ouT Done | BOOL | TRUE: Block execution was completed successfully.
Busy | BOOL | TRUE: Block is being executed.
Error | BOOL | TRUE: An error has occurred during execution.
Note:

The functionality of inputs LIMP, LIMN, STOP, and REF is automatically enabled with the
corresponding configuration.

BERGER LAHR 55/66

we control motion

Step 7 Motion library for IFS, IFE, and IFA

"ﬁl'é'o;;rﬂ_
“lmotion
{comirol |

8.14.5 MC_ControllO_IFx

Task:

Programming the configurable inputs and outputs (MC_ConfigurelO_IFx).

Calling:

—EH

"AC_ContralI0_IFx"

— Execute

— IOHNumber

- Index

— Subindex

- Ei1tHask

— Switeh

- Naluel

— Nalue2

- iz

—Init

Done
Busy [
Error o

END [

Parameter description:

Par. type ‘ Parameter

‘ Data type

Description

IN

Execute

BOOL

FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.

IONumber

INT

Number of the input/output that is to be configured:
0:100:

1:10 1:

2:10 2:

3:10 3:

Value range: 0..3, initial value: 0.

Index

INT

Index of the parameter to be controlled.

Programmable input:
Index of the parameter to be written.

Programmable output:
Index of the parameter to be read.

Value range: 0..32767, initial value: O.

sub-index

INT

Sub-index of the parameter to be controlled.

Programmable input:
Sub-index of the parameter to be read.

Programmable output:
Sub-index of the parameter to be read.

Value range: 0..32767, initial value: 0.

BitMask

DWORD

Bitmask for the parameter value.

Bitmask for a logical AND operation with the reading value before
further processing. Special case: With bitmask 0, the reading value
remains unchanged (as for 16#FFFFFFFF).

Value range: 0..16#FFFFFFFF, initial value: 0.

BERGER LAHR

we control motion

56/66

| PCopen)—
Tlimotion [~
Step 7 Motion library for IFS, IFE, and IFA {comirol |

Par. type | Parameter Data type | Description

IN Switch INT Edge detection or comparison operator.

Programmable input:

Selection of the edges to be detected

0: No response to signal level change

1: Response to rising edge (Value 1)

2: Response to falling edge (Value 2)

3: Response to both edges (Value 1 and Value 2)

Programmable output:

Selection of the comparison condition

0: Reading value = comparison value (Value 1)
1: Reading value <> comparison value (Value 1)
2: Reading value < comparison value (Value 1)
3: Reading value > comparison value (Value 1)

Value range: 0..3, initial value: 0.

Valuel DINT Write value for rising edge or comparison value
Programmable input:

Write value for rising edge

Programmable output:

Comparison value for condition

Value range: -2147483648..2147483647, initial value: 0.

Value2 DINT Write value for falling edge

Programmable input:

Write value for falling edge

Programmable output:

no meaning

Value range: -2147483648..2147483647, initial value: 0.

IN_OUT | Axis I STRUCT I Axis reference [AxisDB.AxisReference]. I
Init | BOOL | Initialisation bit [Init.I0 .. Init.63]. |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |

Operating principle:

Configuration of "programmable input"

The drive continuously monitors the input IONo, and executes parameters accesses independently
as a function of bitmask and edge detection.

Parameter access always has the following sequence:

1. Rising or falling edge detected (Switch) at the input (IONo).

2. Read the parameter (Index, Sub-index).

3. AND operation of the reading value using the bitmask (BitMask).

4. OR operation of the result using the write value of a rising (Valuel) or falling edge (Value2).
5. Write the result to the parameter (Index, Sub-index).

Configuration of "programmable output”
The drive cyclically reads the parameter and sets the output as a function of bitmask and
comparison operator IONo.
Parameter access always has the following sequence:
1. Read the parameter (Index, Sub-index).
2. AND operation of the reading value using the bitmask (BitMask).
3. Comparison of the result with the comparison value (Valuel).
4. Depending of the result, the output is set (IONo) HIGH or LOW (Switch).

BERGER LAHR 57/66

we control motion

—[PLCopen|—
“liotion —
Step 7 Motion library for IFS, IFE, and IFA {comirol |

8.15 Error handling

For the purpose of error handling, every block has an output Error, which is set if a synchronous or
asynchronous error occurs. For a more detailed analysis of the error's cause, the block
MC_ReadAxisError_IFx is called. By means of MC_Reset_IFx, the error cell is cleared to make it
available for future error messages.

8.15.1 MC_ReadAxisError_IFx

Task:
Reading the error message of a drive.

Calling:
“HC_RdAx1sErrar_IFz" validl
—EH
Busy [
—Enable
Error o
— Rxiz
. ErrerID|_
— Inmt
EHO |
Parameter description:
Par. type | Parameter | Data type | Description |
IN Enable BOOL FALSE: Terminates block execution.
TRUE: Starts block execution.
IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Valid | BOOL | TRUE: The value to be read is available. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |
ErrorlD INT 0: No error message in the error cell
>0: Error number (see list of error numbers).
Value range: 0..32767, initial value: 0.

BERGER LAHR 58/66

we control motion

—{PLcopenl -

“lmotion|

Step 7 Motion library for IFS, IFE, and IFA {control |
8.15.2 MC_Reset_IFx
Task:
Error acknowledgement.
Calling:
"AC_Reset_IFx"
— EN Done
— Execute Eiuzy
— Rxiz Error
—Init END
Parameter description:
Par. type | Parameter | Data type | Description
IN Execute BOOL FALSE: Deletes the output parameter when block has been
executed.
TRUE: Rising edge starts block execution.
IN_OUT | Axis | STRUCT | Axis reference [AxisDB.AxisReference]. |
Init | BOOL | Initialisation bit [Init.I0 .. Init.163]. |
ouT Done | BOOL | TRUE: Block execution was completed successfully. |
Busy | BOOL | TRUE: Block is being executed. |
Error | BOOL | TRUE: An error has occurred during execution. |

Operating principle:

The error cell is cleared to make it available for future error messages, provided that the cause of
the error has been rectified.

If the motor has been stopped by the automatic error response, it will be enabled again, provided
that the cause of the error has been rectified when the error message is acknowledged.

Note

Only the first occurred error is entered in the free error cell, in order to permit conclusions to be
drawn about the error's cause. As long as the error cell is occupied, previous error numbers are
not overwritten (also not if the cause of the error has already been rectified), so that no new errors
are entered.

BERGER LAHR 59/66

we control motion

—[PLCopen]—

“lotion —
Step 7 Motion library for IFS, IFE, and IFA {comirol |

9 Glossary

User parameters

Parameters that can be changed by the user, and remain in the memory after the drive has been
switched off. These parameters are always marked with per in the manual.
MC_ResetParameters [FXx MC_StoreParameters_IFx

Asynchronous error

Asynchronous errors occur independently of the programme sequence, such as an activated limit
switch or motor overtemperature, for example.

Error handling

Resolution

The positioning resolutions referred to the motor output shaft (without gearing) are:
e ForIFA: 16384 increments per revolution
e ForlFE: 12 increments per revolution
e For IFS: 20000 increments per revolution

Movement profile generator

From the parameters for acceleration, deceleration, set speed, set and actual position, the
movement profile generator calculates a position/timing diagram that indicates the motor's setpoint
position at any time of the movement. This profile is processed by the drive control during the
movement.

Error class
The device response depends on the severity of an error:

Class ‘ Response ‘ Description ‘
0 | Warning | Message only, no interruption of movement mode. |
1 | Quick stop | Motor stops, power amplifier and control remain active. |
2 | Switch-off | Motor standstill, power amplifier is switched off when motor is at standstill. |
3 | Fatal error | Power amplifier is switched off immediately |
4 | Uncontrolled operation | Power amplifier is switched off immediately, device must be switched off. |

Error cell

The error cell contains the error code and the error class of an error that has occurred. A newly
occurred error will be entered, provided that the error cell is free (i.e. equal to zero). If the error cell
is occupied (i.e. not equal to zero), the previous error message will not be overwritten — instead,
the new error message is ignored. The error cell is cleared by executing the block MC_Reset_IFx,
provided that the cause of the error has been rectified.

Device parameter list or Object list

List of all the parameters in the device that can be accessed for reading or writing. The parameters
are described in the device documentation.
MC_ WriteParameter IFx MC ReadParameter IFx

BERGER LAHR 60/66

we control motion

| PLC open]
{ _\ i
Jmotion [
Step 7 Motion library for IFS, IFE, and IFA {comirol |

Inc, Inc/s
Stands for "increments" or "increments per second".

Referred to the motor, this represents the resolution of the power amplifier, with which the motor
can be positioned (without taking any gearing into account).

Resolution of the drives:
e [FA: 16384 increments per revolution
e |FE: 12 increments per revolution
e [FS: 20000 increments per revolution

Drive speed results from the number of increments per second [Inc/s].

Synchronous error

Synchronous errors occur during writing of parameters or starting of functions, and are related to
an action, for example writing an impermissible parameter value or starting a movement with
disabled motor current.

Error handling

IiERGEit I.AHR 61/66

we control motion

Step 7 Motion library for IFS, IFE, and IFA {control

JT’ LC open

1a

_lmotion |

10 List of error numbers

ErrorlD ‘ ErrorlD ‘ Error ‘ Drive error messages
hex dec class |
0100h | 256 | 2| Undervoltage 1 power supply |
0101h | 257 3| Undervoltage 2 power supply |
0102h | 258 3| Overvoltage power supply |
0105sh | 261 3 | Motor overload |
oloch | 268 2 | Power amplifier overtemperature |
0110h | 272] 3| Motor blocked or stalled |
0111h | 273 3| Tracking error |
o112h | 274 4| Motor position sensor defective |
o115h | 277/ 1| Protocol error fieldbus |
0116h | 278 | 2 | fieldbus: Nodeguarding/Watchdog or Clear |
0117h | 279 3| Frequency at pulse/direction input too high |
oitsh | 280 3| Short circuit dig. outputs |
0119h | 281 3| Safety function “Power Removal” tripped (PWRR_A, PWRR B) |
011Ah ‘ 282 ‘ 4 ‘ PWRR_A and PWRR_B inputs at different signal levels for >1 ‘
second
olich | 284 4| Hardware error EEPROM |
011Dh | 285/ 4| Start-up error |
011Eh | 286 | 4 | Internal system error |
011Fh | 287| 4| Watchdog |
0120h | 288 | 0 | Warning position overrun profile generator |
0121h | 289 0| Warning overtemperature IGBTs |
0128h | 296 | 0| Warning I/O timing |
0130h | 304 | 0| Parameter does not exist, invalid index |
013th | 305]| 0| Parameter does not exist, invalid sub-index |
0132h | 306 | 0| Communication protocol: unknown service |
0133h | 307/ 0| Parameter not writable |
0134h | 308 0| Parameter out of range |
0135sh | 309] 0| Segment service not initialised |
0136h | 310/ 0| Error with recording function |
0137h | 311 0| Status not Operation Enable |
0138h ‘ 312 ‘ 0 ‘ Processing in current operating status of state machine not
possible

0139h | 313 0| Setpoint position generation interrupted |
013Ah | 314 0 | Switchover during axis operating mode not possible |
013Bh | 315] 0 | Command not allowed during processing (xxxx_end=0) |
013ch | 316/ 0| Error in selection parameter |
013bh | 317] 0| Position overrun exists/occurred |
013Eh | 318/ 0| Actual position is not yet defined |
013Fh | 319 4| EEPROM not initialised |
0140h | 320 4 | EEPROM not compatible to current software |
0141th | 321 4| EEPROM read error |
0142h | 322] 4| EEPROM write error |
0143h | 323 4| Checksum error in EEPROM |

BERGER LAHR

we control motion

62/66

_i?’I.C open

_.xJ:ift;tion =
Step 7 Motion library for IFS, IFE, and IFA {control
ErrorlD ‘ ErrorlD ‘ Error ‘ Drive error messages
hex dec class
0144h | 324]| 0| Non-calculable value |
0145h | 325/ 0| Function only allowed at standstill |
0146h | 326 0| Reference movement is active |
0147h | 327 0| Command not allowed during processing (xxx_end=0) |
0148h | 328 1| RS 485 interface: overrun error |
0149h | 329 1| RS 485 interface: framing error |
014Ah | 330 1| RS 485 interface: parity error |
014Bh | 331 1| RS 485 interface: receive error |
ol4ch | 332 1| RS 485 interface: buffer overrun |
014Dh | 333/ 1| RS 485 interface: protocol error |
014Eh | 334 1| Node guarding, interface no longer serviced |
014Fh | 335] 0| “Quick Stop” status is enabled |
0150h | 336 1| lllegal limit switch active |
0151h | 337/ 1| Switch was overrun, retraction impossible |
0152h | 338 1| Switching edge within run-off not found |
0153h | 339 1| Index pulse not found |
0154h 340 1| Reproducibility of the index pulse movement uncertain, index
pulse motion too close to the switch
0155h 341 1| Switch still active after retraction, cause possible bouncing of
switch

0156h | 342 1| Input not configured as LIMP/LIMN/REF |
0157h | 343 1| Interruption or “Quick Stop” via LIMP |
0158h | 344 1| Interruption or “Quick Stop” via LIMN |
0159h | 345 1| Interruption or “Quick Stop” via REF |
015Ah | 346 | 1| Interruption or “Quick Stop” via STOP |
015Bh | 347] 1| Limit switch not enabled |
015Ch | 348/ 0| Processing not allowed in current axis operating mode |
015Dh | 349 0 | Parameters not available with this device |
015eh | 350 | 0| Function not available with this device |
015Fh | 351 0| Access denied |
o160h | 352 4| Production data in EEPROM not compatible with current software |
0161h | 353 4 | Index pulse sensor not compensated |
0162h | 354 0| Drive is not referenced |
0163h | 355 0| CAN interface COB-ID not correct |
0164h | 356 | 0| CAN interface Error in query |
0165h | 357 0| CAN interface overrun error |
0166h | 358 0| CAN interface telegram could not be stored |
0167h | 359 0| CAN interface general error CAN stack |
0168h | 360 0| fieldbus: Data type and parameter length do not match |
0169h | 361 0 | Blocking detection is switched off |
016Ah | 362 | 0| Connection failure to DSP boot loader |
016Bh | 363 0| Communication error to DSP boot loader |
ol6ch | 364] 0| Error initialising SPC3 memory |
016Dh | 365 0| Error in calculation of the length of input/output data |
016Eh | 366 | 0| Specified Profibus address is outside legal range |
ol6Fh | 367 0| lllegal use of DIP switch S1.1 |

BERGER LAHR

we control motion

63/66

JT’ LC open

i
:Iqimtion =
Step 7 Motion library for IFS, IFE, and IFA {control
ErrorlD ErroriD Error Drive error messages
hex dec class
017oh | 368/ 0| DSP software not compatible with Profibus software |
0171h | 369 | 0 | Checksum of Profibus DP interface software incorrect |
0172h | 370 0 | Oscilloscope function: no other data available |
0173h | 371 0 | Oscilloscope function: trigger variable was not defined |
0174h | 372] 0| Oscilloscope function incompletely configured |
0175h | 373 1| Internal communication |
0177h 375 1| Interruption or “Quick Stop” via software limit switch for clockwise
rotation
0178h 376 1| Interruption or “Quick Stop” via software limit switch for
counterclockwise rotation

Library error messages

|
16#FF00 | 65280 | | Wrong_AxisRef |
16#FF01 | 65281 | | Initialization_Failed |
16#FF02 | 65282 | | Wrong_Data_Length |
16#FF03 | 65283 | | Timeout |
16#FF04 | 65284 | | Axis_Busy |
16#FF05 | 65285 | | Invalid_Parameter Number |
16#FF06 | 65286 | | Unknown_State |
16#FF07 | 65287 | | Capture Busy |
16#FF08 | 65288 | | Trigger_Event_Lost |
16#FF09 | 65289 | | Axis_Not In_Standstill |
16#FFOA | 65290 | | Unknown_Device_Type |
16#FFOB | 65291 | | Wrong_Data_Struct |
16#FF20 | 65312 | | CIS specifier not valid or unknown |
16#FF21 | 65313 | | Attempt to write a read only Object |
16#FF22 | 65314 | | Object does not exist in the Object dictionary |
16#FF23 | 65315 | | Data type does not match, length of service parameter does not match |
16#FF24 | 65316 | | Sub-index does not exist |
16#FF25 | 65317 | | Value range of parameter exceeded (only for write access) |
16#FFFF | 65535 | | Unknown_Error |

BERGER LAHR

we control motion

64/66

J_P LC open
i,

Step 7 Motion library for IFS, IFE, and IFA _ﬁ:ﬁ?_”l_
11 Parameter list for Up- and Download function
MC_UploadParameter |Fx MC_DownloadParameter |Fx

Name of parameter | Profibus address | Drive |
timeout | 1:11 | IFA, IFE, IFS |
namel | 111 | IFA, IFE, IFS |
name?2 | 11:2 | IFA, IFE, IFS |
_still | 141 | IFS |
_acc	14:2	IFS
_const	14:3	IFS
stop	14:4	IFS
monitorM	147	IFS
_max	15:3	IFA, IFE
_maxStop	15:4	IFA
_maxBlk	155	IFE
p_maxDiff | 157 | IFE |
KPn | 15:8 | IFA, IFE |
TNn | 15:9 | IFA, IFE |
KPp | 15:10 | IFA, IFE |
KFPp | 15:11 | IFA, IFE |
T block | 15:12 | IFE |
p_win | 15:15 | IFA |
p_winTime | 15:16 | IFA |
p_MaxDif2 | 15:17 | IFA |
pscDamp | 15:20 | IFA |
pscDelay | 15:21 | IFA |
serBaud | 221 | IFA, IFE, IFS |
serAdr | 22:2 | IFA, IFE, IFS |
serFormat | 22:3 | IFA, IFE, IFS |
SafeState | 245 | IFA, IFE, IFS |
invertDir | 28:6 | IFA, IFE, IFS |
WarnOvrun | 28:11 | IFA, IFE, IFS |
SignEnabl | 28:13 | IFA, IFE, IFS |
SignLevel | 28:14 | IFA, IFE, IFS |
dec_Stop | 28:21 | IFA, IFE, IFS |
Flt_pDif | 28:24 | IFA, IFE |
v_targetO | 29:23 | IFA, IFE, IFS |
acc | 29:26 | IFA, IFE, IFS |
100_def | 341 | IFA, IFE, IFS |
101_def | 34:2 | IFA, IFE, IFS |
102_def | 34:3 | IFA, IFE, IFS |
103_def | 34:4 | IFA, IFE, IFS |
progDelay | 347 | IFA, IFE, IFS |

BERGER LAHR 65/66

we control motion

we control motion

motion |
Step 7 Motion library for IFS, IFE, and IFA {control
100 _Index | 800:1 | IFA, IFE, IFS |
I00_Subindex | 800:2 | IFA, IFE, IFS |
I00_BitMask | 800:3 | IFA, IFE, IFS |
I00_Switch | 800:4 | IFA, IFE, IFS |
100 Valuel | 800:5 | IFA, IFE, IFS |
100_Value2 | 800:6 | IFA, IFE, IFS |
I01_Index | 801:1 | IFA, IFE, IFS |
|01_Subindex | 801:2 | IFA, IFE, IFS |
|01_BitMask | 801:3 | IFA, IFE, IFS |
101_Switch | 801:4 | IFA, IFE, IFS |
101 Valuel | 801:5 | IFA, IFE, IFS |
I01_Value2 | 801:6 | IFA, IFE, IFS |
102_Index | 802:1 | IFA, IFE, IFS |
102_Subindex | 802:2 | IFA, IFE, IFS |
102_BitMask | 802:3 | IFA, IFE, IFS |
I02_Switch | 802:4 | IFA, IFE, IFS |
102_Valuel | 802:5 | IFA, IFE, IFS |
102_Value2 | 802:6 | IFA, IFE, IFS |
103_Index | 803:1 | IFA, IFE, IFS |
|03_Subindex | 803:2 | IFA, IFE, IFS |
|03_BitMask | 803:3 | IFA, IFE, IFS |
103_Switch | 803:4 | IFA, IFE, IFS |
103 Valuel | 803:5 | IFA, IFE, IFS |
|03 Value2 | 803:6 | IFA, IFE, IFS |
BERGER LAHR 66/66

	1 Extracting the library
	2 Starting a new project
	3 Configuring the hardware
	4 Installing the GSD
	5 Linking the drive into the PB network
	6 Assigning the I/O addresses
	6.1 Parameter data channel
	6.2 Process data channel

	7 Description of the library blocks
	7.1 Copying the axis structure into the project
	7.2 Creating an axis reference

	8 Library blocks
	Basic calling procedures
	Explanation of common parameters
	Phasing diagrams
	8.4 Initialisation
	8.4.1 MC_Init_IFx
	8.4.2 MC_Power_IFx

	8.5 Jog
	8.5.1 MC_Jog_IFx

	8.6 Homing
	8.6.1 MC_SetPosition_IFx
	8.6.2 MC_Home_IFx

	8.7 Profile position mode
	8.7.1 MC_MoveAbsolute_IFx
	8.7.2 MC_MoveAdditive_IFx

	8.8 Velocity mode
	8.8.1 MC_MoveVelocity_IFx

	8.9 Electronic gear
	8.9.1 MC_GearIn_IFx
	8.9.2 MC_GearOut_IFx

	8.10 Stopping
	8.10.1 MC_Stop_IFx

	8.11 Fast position capture
	8.11.1 MC_TouchProbe_IFx
	8.11.2 MC_AbortTrigger_IFx

	8.12 Read parameter
	8.12.1 MC_ReadParameter_IFx
	8.12.2 MC_ReadStatus_IFx
	8.12.3 MC_ReadActualPosition_IFx
	8.12.4 MC_ReadActualVelocity_IFx
	8.12.5 MC_ReadRefPosition_IFx
	8.12.6 MC_ReadRefVelocity_IFx
	8.12.7 MC_ReadActualMasterPosition_IFx
	8.12.8 MC_ReadActualMasterVelocity_IFx
	8.12.9 MC_UploadParameter_IFx

	8.13 Write parameter
	8.13.1 MC_WriteParameter_IFx
	8.13.2 MC_ResetParameters_IFx
	8.13.3 MC_StoreParameters_IFx
	8.13.4 MC_DownloadParameter_IFx

	8.14 Inputs/outputs
	8.14.1 MC_ReadDigitalInput_IFx
	8.14.2 MC_ReadDigitalOutput_IFx
	8.14.3 MC_WriteDigitalOutput_IFx
	8.14.4 MC_ConfigureIO_IFx
	8.14.5 MC_ControlIO_IFx

	8.15 Error handling
	8.15.1 MC_ReadAxisError_IFx
	8.15.2 MC_Reset_IFx

	9 Glossary
	10 List of error numbers
	11 Parameter list for Up- and Download function

